Submitted papers

  • A. Díaz, H. Pijeira and J. Quintero, Polynomials of least deviation from zero in Sobolev p-norm, arXiv:2106.06290 (2021), 1-2.

Scientific Publications

  1. A. Díaz, F. Marcellán, H. Pijeira and W. Urbina, Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series, Bull. Malays. Math. Sci. Soc., 44 (2021), 571-598.
  2. A. Díaz, G. López and H. Pijeira, Asymptotic zero distribution for a class of extremal polynomials, Bull. Math. Sci., 11 No.1 (2021), 1950019 (1-18).
  3. A. Díaz, H. Pijeira, and I. Pérez. Rational Approximation and  Sobolev-type  Orthogonality, J. Approx. Theory, 260 (2020), 105481(1-19).
  4. M. Bello, H. Pijeira and D. Rivero, Iterated integrals and Borwein-Chen-Dilcher polynomial,  17:148 (2020), 1660-5446/20/050001-19.
  5. H. Pijeira and D. Rivero,   Iterated Integrals of Jacobi Polynomials, Bull. Malays. Math. Sci. Soc.(2019), 43 (2020), 2745-2756.
  6. J. Borrego and H. Pijeira, Differential orthogonality: Laguerre and Hermite cases with applications, J. Approx. Theory, 196 (2015), 111-130.
  7. D. Rivero, H. Pijeira and P. Assunçao, Edge Detection Based on Krawtchouk Polynomials, J. Comp. Appl. Math., 284 (2015), 244-250.
  8. E. Huertas, F. Marcellán and H. Pijeira, An electrostatic model or zeros of perturbed Laguerre polynomials, Proc. Amer. Math. Soc., 42 (2014), 1733–1747.
  9. J. Borrego and H. Pijeira, Orthogonality with respect to a Jacobi differential operator and applications, J. Math. Anal. Appl., 404 (2013), 491–500.
  10. F. Marcellán, A. Mendes and H. Pijeira, Bases of the space of solutions of ome fourth-order linear difference equations: applications in rational approximation, J. Difference Equ. Appl., 19 (2013), 1632–1644.
  11. H. Pijeira, Y. Quintana and José M. Rodríguez, Sobolev formal orthogonality on algebraic curves and extensions of Favard theorem, Jaen J. Approx., 3 (2011), 193–207.
  12. J. Bello, H. Pijeira, C. Márquez, and W. Urbina, Sobolev-Gegenbauer-type orthogonality and a hydrodynamical interpretation, Integral Transform. Spec. Funct. 22 (2011), 711–722.
  13. H. Pijeira, J. Bello and W. Urbina, On Polar Legendre Polynomials, Rocky Mountain J. Math. 40 (2010), 2025–2036.<
  14. C. Díaz, R. Orive and H. Pijeira, Zeros and Logarithmic Asymptotics of Contracted Sobolev Orthogonal Polynomials for Exponential Weights, J. Comp. Appl. Math., 233 (2009) 691-698.
  15. C. Díaz, R. Orive and H. Pijeira, Asymptotically extremal polynomials with respect to varying weights and application to Sobolev orthogonality, J. Math. Anal. Appl. 346 (2008) 480-48.
  16. G. López, A. Martínez, I. Pérez and H. Pijeira, Strong Asymptotics for Sobolev Orthogonal Polynomials, J. Math. Anal. Appl., 340 (2008), 521-535.
  17. G. López, F. Marcellán and H. Pijeira, Logarithmic asymptotic of contracted Sobolev extremal polynomials on the real line, J. Approx. Theory, 143 (2006), 62-73.
  18. G. López, I. Pérez and H. Pijeira, Asymptotic of extremal Sobolev polynomials in the complex plane, J. Approx. Theory, 137 (2005), 226-237.
  19. H. Pijeira, Y. Quintana and W. Urbina, Zero location and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev, Revista Colombiana de Matemáticas, 35 (2001), 77-97.
  20. A. Fundora, H. Pijeira and W. Urbina, Asymptotic Behavior of Orthogonal Polynomials Primitives, Margarita Mathematica en memoria de José Javier (Chicho) Guadalupe Hernández, Servicio de Publicaciones de la Univ. de La Rioja, Logroño, Spain, (2001), 626-632.
  21. G. López, H. Pijeira and I. Pérez, Sobolev orthogonal polynomials in the complex plane, J. Comp. Appl. Math., 127 (2001), 219-230.
    and Numerical Analysis 2000, Volume 5 - Quadrature and Orthogonal Polynomials, W. Gautschi, F. Marcellan, L. Reichel, eds., North-Holland, ISBN: 0-444-50615-2, 2001.
  22. A. Martínez and H. Pijeira, Strong asymptotics for Sobolev orthogonal polynomials, J. d'Analyse Mathematique, 78 (1999), 143-156.
  23. D. Barrios, G. López, and H. Pijeira, The moment problem for a Sobolev inner product, J. Approx. Theory, 100 (1999), 364-380.
  24. G. López and H. Pijeira, Zero location and n-th root asymptotics de Sobolev orthogonal polynomials, J. Approx. Theory, 99 (1999), 30-43.
  25. H. Pijeira, Theory of Moments and Asymptotics Properties for Sobolev Orthogonal Polynomials, Doctoral Dissertation, UC3M, 1998 (in spanish)
  26. A. Martínez, J. J. Moreno, and H. Pijeira, Strong asymptotics for Gegenbauer-Sobolev orthogonal polynomials, J. Comp. Appl. Math., 81 (1997), 211-216.
  27. A. Martínez, J. J. Moreno, and H. Pijeira, Asymptotics for Gegenbauer-type polynomials, in Complex Meth. in Approx. Th., A. Martínez, F. Marcellán, J.J. Moreno, eds., Serv. de Pub. de la Univ. de Almería, ISBN. 84-8240-046-0. (1997), 85-91.
  28. G. López and H. Pijeira, Condiciones para la convergencia de los aproximantes multipuntuales de Padé para funciones meromorfas de tipo Markov, Rev. Ciencias Técnicas, Físicas y Matemáticas, Academia de Ciencias de Cuba, 5 (1984), 75-97.

Books